How Human Factors Drove the
Design and Implementation of
the Virtual Windtunnel

Steve Bryson
NASA Ames Research Center
http://science.nas.nasa.gov/~bryson
http://science.nas.nasa.gov/Software/VWT

Outline

* Introduction
* Design
—The Application Task

—Primary Challenges
—Initial Choices

* Implementation
— Software Design

—Run-time Architecture
—Interface Design

slide 2

Introduction

 Virtual Windtunnel: Virtual reality for
the visualization of CFD simulations

—volumes of vector and scalar data on
complex meshes

— pre-computed files
—variety of visualization techniques
costreamlines
coisosurfaces
cocontour planes
cogfC...

slide 3

The Application Task

* Exploration of spatially complex
simulated phenomena in 3D volume

* Different users looking for different
things

—vortical structure
— pressure distribution
—overall sense of flow

* Ease of use with many capabilities

slide 4

Primary Challenges

- High performance
— computationally intensive

« Versatile interface

- Very large amounts of data (> 200 GB)

. Extensibility to new interfaces and
capabilities

- Conservative user community
+ Distributed operation

slide 5

Initial Choices
(not an historical account)

* Support a variety of direct manipulation
interfaces

—any visual display with sufficient resolution/comfort
~disqualifies head-mounts
—any user input technology

* Place all control within environment
* Decouple computation and interaction
* All data resident in memory

* Use an object-oriented approach, allows easy
addition

slide 6

Initial Choices: User Control

- Based on direct manipulation

- Restrict to two active gestures
—grab and point

 Reject “direct manipulation
everywhere”

—very crowded scenes
—many visualizations move

- Use “visualization control tools
—groups visualizations in a natural way
—metaphors from real wind tunnels

slide 7

Implementation: Software
Design

* Implemented in C++ and openGL
* Strong encapsulation

—each object manages all aspects of itself

—Specified high-level interface between
objects

* User interacts with tool objects

—Some tools control visualizations (vtools)
—Some tools control environment

* Visualizations access data object(s)

slide 8

Class Hierarchy

 Tools and visualizations are
environment objects

—managed by environment list object
- Human(s) and data are special global

objects

human e vlist \\EF

tool

slider) [menuj ... vtoo m:.mm:.::% mmOm:_.—moT:.
/’ t\l\

sample_point|rake
[’ \\\
. <_m=m=Nu=o=m el
contains E s which communicate| seed vo.: S to data from Im

visualizatio

slide 9

Visualizations

* Vector visualization
—Streamlines, etc

* Scalar visualization
—(local) isosurfaces
—cutting/contour planes
—color-mapped objects
—grid planes

* Vector and Scalar visualization
—hnumerical values

slide 10

Visualization control tools
(vtools)

Viools contain emitters of visualizations
— emitter can emit up to five visualization types
Sample point (single emitter)

Rake (line of emitters) J_N//>

—

Plane (2D array of emitters)
—single emitter for cutting/contour plane

slide 11

Non-Direct-Manipulation
_ Visualizations

* Global Visualizations
—controlled via menu and sliders
* Pre-computed graphics data

—allows much larger data sets to be non-
interactively viewed

>€.g. results of batch visualizations

slide 12

Other interface tools

» Pop-up menus for command selection
—“point in space” paradigm
— hierarchical
—acts on current vtool
—depends on current vtool
. Sliders to control parameters of
environment/current vtool
-1D, 2D, 3D

slide 13

Extensibility: Adding a
Visualization

* fill in compute() and draw() routines
according to template

—interaction with vtools happens

“automatically”: Managed at higher level of
class hierarchy

—Uuse of some obtuse calls required,
examples in template

* developer only needs to know how to
compute and draw visualization

—uses local data supplied by vtools
—does not need to understand rest of VWT

slide 14

Extensibility: Adding a vtool

. fill in find(), grab(), and draw() routines
according to template

—find() and grab() use human object as input

—developer determines what “find” and “grab”
mean

—requires somewhat deeper knowledge of vwt

e« Success
—several visualizations have been added
by colleagues and summer students

slide 15

Environment Control

* Control commands come from severa]
sources

—menus, sliders, startup scripts, keyboard
—future: voice control, text input
* Command and Actuator classes

—Command encapsulates action of
command

AP/ is text and value based

— Actuator is a subclass of tool which
contains a command

—add a command and assign it to an
actuator

slide 16

Implementation: Run-Time
Architecture

« Interaction > 10 fps, < 0.1 sec latency
—both display and control

- Computation > 2 fps < 0.5 sec latency
—determined by user

- Implies that interaction and
computation take place in two
asynchronous process groups

—issues of communication and
synchronization

slide 17

Overall Run-Time Architecture

Graphics Process Group

‘ Computation

Process

Child Main Group

Graphics Graphics | Data
Process and Buffers
for 2nd Interaction
Pipeline Process \
" 4
Synchronization

slide 18

Computation Process Group

- Parallelize across “non-parallel”
visualizations

— streamlines, iterative isosurfaces, etc.
—no attempt to load-balance

« Allow “internally parallel”
visualizations

—global isosurfaces

 So there is a parallel and non-parallel
phase

slide 19

Graphics Process Group

* Multi-processed to Support multiple
graphics pipelines
* Includes sampling of I/0 devices

* Includes setting of human states

—current graphics transformations
—location of human “parts”

—current gesture(s)
* Processing of user input

slide 20

Computation-Graphics
Communication

« Many demands
— efficiency, simultaneity, reversible time...
«g.g. time stops, one visualization moved

- Handle on an object-by-object basis
— communication buffers for each object

—use various senses of time to choose
buffer

 Provide API to hide this complexity

« Converts gracefully to distributed
operation

slide 21

Visualization Computation

* User specifies the desired
computational frame rate

—does not effect display/interaction frame
rate (one hopes)

* VWT distributes specified frame time
over visualizations

—non-trivial

* Each visualization determines how to
do best job in given time

—time-critical computing

slide 22

Implementation: Display

3D presence very important

Immersion less important

— users often relate to simulation as model
soimmersive workbench
«“fishtank” VR display

 Display quality very important
« Comfort very important

Work at many scales
—build into navigation paradigm

slide 23

Implementation: User control

* Support both 3D and 2D manipulation
—trackers and mice

—find() and grab() in tools come in both 2D
and 3D versions

* Maintain the same interface for all
devices

—menus in environment even when in
workstation/mouse mode

* Workstation/mouse mode popular
—fast, cheap, and in control

slide 24

Near Future

- Remove data-in-memory limitation
through very fast access from disk

—requires files in special format
—active research area in our group

- Problem when there are a large number
of widgets

—explore methods of grouping

slide 25

Unresolved Issues: Evaluation

* Large System Evaluation IS very
difficult

—cCan test pieces, but this does not inform
how pieces work together

—can test whole system, but don’t have
sense of what in particular is good/bad

—problem is one of high dimensionality
* User feedback is best

slide 26

